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Abstract

In this project, a balancing robot was assembled and programmed. The system ran on a MyRIO
embedded device, which was programmed in LabVIEW. Several controllers were designed and
tuned to make the robot balance, to compensate for wheel friction, and to control the position and
heading of the robot. An inertial measurement unit (IMU) with an accelerometer and gyro was used
to measure the pitch angle through a complementary filter. Finally, the robot was programmed to
follow a black line by the use of computer vision.
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1 Introduction

Many mobile robots today have the advantages of being easy to control and maneuver. However,
many also suffer from being unpractical, lumpy, and in the need of much floor space to maneuver.
With a two-wheeled balancing robot, the advantages are the disadvantages of ordinary designs, it
can rotate on the spot, it requires less space in the environment, and in this project, it offers much
insight into control theory. Due to its unstable nature as an inverted pendulum, the balancing act
requires sensor data, filtering, actuation, and locomotion to be able to stand straight.

The result will be a balancing robot following a flat path on the floor using camera vision with
MyRIO as the embedded device and LabVIEW as the software development tool. In this project,
the implementation of these variables with control and odometry of a propulsion system, sensor
fusion from accelerometer and gyro including filtering, control system of balancing act and path
following from camera vision are to be discovered. This report is combined from four previous
exercises, each focusing on the parts mentioned.

At first, the preparation for a highly accurate control system, with an emphasis on velocity control
and accuracy of the motors, including the positioning of the robot using odometry was acquired.
With this, compensation for friction in the drive system and dead reckoning was utilized.

Secondly, the focus was on implementing the IMU for sensing the pitch and yaw angles of the
robot. These angles are crucial information for enabling the self-balancing act of the robot. The
IMU on the robot consists of the built-in accelerometer on the MyRIO and a Digilent PmodGYRO
breakout board.

The third and most comprehensive exercise focused on enabling the robot to balance autonomously
and the control of the robot’s linear velocity and heading. Either a cascade controller, state
feedback, or a simple PID controller may be used to get the robot balancing. The implementation
of the controller scheme will be done using LabVIEW to program the MyRIO. The robot’s linear
velocity and heading shall be able to be controlled using the LabVIEW VI.

Lastly, the implementation of the camera vision system to control the robots heading based on the
tracking of black lines taped to the floor was done. The lines on the floor are reference feedback
to be fed into the controller with an eye-in-hand configuration by observing the relative position of
the nearby line.

The four exercises are here combined by first summarizing the equipment and connections used,
followed by a theory part focusing on signals, control, and camera vision. The method chapter goes
through all aspects and solutions of the robot and its control.
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2 Equipment and Connections

The robot was assembled with the given equipment. Each motor was connected with 4 machine
screws to the chassis and wired to a common PCB. The PCB and the motor controller breakout
board were then connected, then to the MyRIO and the battery.

The given equipment are listed below.

• 1x MyRIO

• 2x Electric motors with gearbox and encoder

• 1x Motor controller

• 1x Gyro

• 1x 3s 11.1V 2200mAh LiPo battery

• 1x LiPo voltage meter and alarm

• 1x LiPo Charger

• 1x Trust exis Webcam

• 2x Wheels with shaft connection

• Various cables and connectors

The connections between the motors, motor PCB, motor controller, and MyRIO are illustrated
in Figure 2.1. The DC power source is the battery connected to both the motor controller and
MyRIO with a self-made wire harness. The webcam was connected to the USB-input on MyRIO.

As opposed to the exercise description, the connections between the gyro and MyRIO were moved
to the B-side. As the motor connections were using pins 11 and 13 on the A-side, the equal B-side
pins were used for the gyro. The connections can be seen in Table 2.1.

MyRIO B-pins Pin description Gyro pins
33 (+3.3V) Voltage supply (+3.3V)
30 GND Ground
34 I2C.SDA Serial data (SDA)
32 I2C.SCL Serial data (SCL)
11 DIO0 Interrupt 2
13 DIO1 Interrupt 1

Table 2.1: MyRIO and gyro connections
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Figure 2.1: Connections for the robot
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3 Theory

3.1 Pulse Width Modulation

Pulse width modulation (PWM) is a digital approach to reduce the average power of an electrical
signal. It uses rectangular-shaped pulses produced with a given frequency. The length of the pulse
divided by the time cycle is called a duty cycle, see Figure 3.1. This decides the average power
produced. PWM is used to control the input to the motors.

Figure 3.1: PWM example with different duty cycles.[1]

3.2 Low pass filter

A low pass filter is a filter that only lets the low-frequency signals pass and thereby filtering out
higher frequency disturbance and noise in a signal. The advantage is a more readable and clean
signal making the controller more stable. On the other hand, it causes a lag in the signal resulting
in a less responsive system. It is therefore important to find a reasonable trade-off between stability
and delay.

3.3 Odometry

To decide the position of a two-wheeled robot, odometry can be used. Odometry uses the data
from motion sensors to estimate the change in position over time by knowing the rotation and the
radius of the wheel. Figure 3.2 shows some parameters describing the change in the position of a
robot.
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Figure 3.2: Illustration of the robot changing position

The equations used to derive the new position of the robot is given in equations (3.1-3.3).

∆s = ∆sr + ∆sl

2 (3.1)

∆θ = ∆sr − ∆sl

b
(3.2)


xt

yt

θt

 =


xt−1

yt−1

θt−1

+


∆x
∆y
∆θ

 =


xt−1

yt−1

θt−1

+


∆s · cos

(
θt−1 + ∆θ

2

)
∆s · sin

(
θt−1 + ∆θ

2

)
∆θ

 (3.3)

Where:

Parameter Description Value Unit
∆s Change in position of the center point of the robot - m

∆sr Change in position of the right wheel - m

∆sl Change in position of the left wheel - m

∆θ Change in direction of the robot - rad

b Width between the wheels 0.188 m

xt x-position of the robot at time t - m

yt y-position of the robot at time t - m

θt Heading of the robot at time t - rad

3.4 Euler angles, roll and pitch

Euler angles describe the orientation of an object with the help of three angles, roll, pitch, and yaw.
With the help of an accelerometer, roll and pitch can be calculated from trigonometric relationships
between the acceleration vectors. This relationship relies on acceleration due to gravity which
will always give a constant acceleration in one direction. This is also why yaw angle cannot be
computed by this relationship as the rotation will always be around the gravitational axis. The
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angles are calculated with the accelerometer values as shown in equations (3.4-3.5). For the self-
balancing robot, the pitch angle is how much the robot leans forward or backward with respect to
the wheelbase, the yaw angle is the horizontal direction the robot is pointing. The roll is not of
importance for this robot as the surface it will be driving on will always be flat.

φ = tan−1
(
ay

az

)
(3.4)

θ = −tan−1

 ax√
a2

y + a2
z

 (3.5)

Where:

Parameter Description Value Unit
φ Calculated roll - rad

θ Calculated pitch - rad

ay Acceleration in y-direction - g

az Acceleration in z-direction - g

ax Acceleration in x-direction - g

3.5 Sensor fusion

To find the pitch and roll of an object, an inertial measurement unit (IMU) is often used. An IMU
often consists of an accelerometer and a gyroscope. The accelerometer and the gyroscope have
some flaws if they are used separately. An accelerometer is very sensitive to disturbances, thus the
accelerometer data is only reliable in the long term. The gyroscope has a tendency to drift over
time because it only senses changes and has no fixed reference frame, this makes it only reliable
in the short term. Figure 3.3 shows the behavior of the measurements from the accelerometer and
the gyroscope. The green line in Figure 3.3 is an estimation of the true angle and is based on the
fact that the sensor was in an idle state at approximately 0°.

Figure 3.3: Angle measurements from the gyro and accelerometer.

There is a way to use the IMU while eliminating most of the issues explained above. One such
method to combine the two sensors in a complimentary filter.
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3.5.1 Complementary filter

A complimentary filter is a way to fuse two sensors by appreciating the advantages of each sensor
and depreciating their disadvantages. For an accelerometer and gyroscope fusion, it will be based
on a high pass gyroscope filter and a low pass accelerometer filter and then combine the signals to
get the final filtered signal.

The greatest advantage of the complementary filter is that it is computationally simple. However,
it tends to lag behind compared to some more complex filters, such as the Kalman filter. The filter
is expressed in equation (3.6), the balance parameter α controls the balance between calculated
and measured angle.

High-Pass Filter

Low-Pass Filter

+

+

𝜃

න

Integral

𝜃𝑎𝑐𝑐𝑒𝑙

ሶ𝜃𝑔𝑦𝑟𝑜

Figure 3.4: Block diagram of a sensor fusion system

θn = α · (θn−1 + ω · dt) + (1 − α) · θnf (3.6)

Where:

Parameter Description Value Unit
θ Calculated angle - rad

α Balance parameter - −
ω Measured angular velocity - rad/s

θnf Measured non-filtered angle - rad

3.6 Camera Vision

A digital camera creates a 2D image of the environment by converting the light which hits the
camera lens to an electric charge within each pixel cell. The charge is accumulated and converted
to a voltage by an amplifier and then run through an analog to digital converter which converts it
to a digital number. This number is then the digital representation of the image and can be stored
in a digital memory block. This image can then be manipulated by changing the pixel values or to
extract various data from each pixel to identify objects, edges, brightness, or colors in the picture.

3.6.1 Grayscale image

Grayscale images in contrast to color images only contain different shades of gray, from white as
the weakest to black as the strongest. It is possible to convert an image to grayscale by extracting
the luminosity plane from the image. Luminosity is the intensity of light emitted from any color
in the picture, this plane corresponds to the grayscale image. For an 8 bit image, each pixel is
assigned a value between 0 and 255 that represents the light intensity of that pixel, resulting in 256
shades of gray where 0 is fully white and 255 is fully black.
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3.6.2 Regions of interest

Regions of interest (ROI) is any region in the picture which is of particular interest for detection.
This can help narrow the search and speed up computational time by not having to compute the
detection algorithm over the full range of pixels.

3.6.3 Binary image

A binary image is an image that contains pixels of only two colors, usually black and white. This
means that objects in the image can be differentiated from the background by comparing the
luminosity of the pixels against a set threshold value. To find the optimal threshold value, for a
black and white binary image, the graylevel histogram is used to calculate the optimal threshold
value. This can be done using a variety of different algorithms for continuously finding the best
solution in each frame or set a manual static threshold.

3.6.4 Particle Analysis

The binary image detects and differentiates background from objects in the image, but to gain
useful feedback data from this image it is necessary to do some computations on the pixel locations
that make up the object. To find the center of the object in either direction, the leftmost and the
rightmost pixel location must be found and then divided by 2 for finding the center of the object.
Many other such parameters can thus be found by doing some simple mathematical operations on
the pixel locations of the object. This data can then be used for example to track objects.
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4 Method

4.1 Motor velocity and direction control

The motors velocity would be controlled by a PWM signal making it possible to steplessly control
the velocity of the motors. The motors would need to be programmed to be able to spin in both
directions making forward and reverse motion of the robot possible. Figure 4.2 shows the LabVIEW
code that was used.

For each motor, two pins on the motor controller PCB control the direction of the motor, also a
common standby signal is used to turn the motors on or off. To control the direction of the motors,
the input connections on the motor controller, together with the STBY connection, were connected
to the MyRIO. In LabVIEW, using the MyRIO digital pin blocks the pins on the MyRIO were
assigned to boolean values using a simple switch in the LabVIEW front panel. The motion of
the motors was given according to the controller scheme given in Table 4.1. The switches in the
LabVIEW front panel could thus be used to control the on/off power and direction of the motors.

For the PWM signal to control the velocity of the motors, the PWMA and PWMB connections
on the motor controller were connected to the MyRIO. In LabVIEW, the MyRIO PWM block set
to a frequency of 10 kHz was used to assign the pins, a slider from the LabVIEW front panel was
used as input to the duty cycle. The slider could then be used to control the PWM signal and thus
controlling the velocity of the motors.

STBY - pin 19 AIN2 - pin 15/
BIN2 - pin 11

AIN1 - pin 17/
BIN1 - pin 13

Motor

Low Low Low Off
High High High Short brake
High High Low CCW
High Low High CW
High Low Low Stop

Table 4.1: Motor motion controller scheme

Figure 4.1: Motor controller layout
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Figure 4.2: Digital pin and PWM control in LabVIEW

4.2 Measurement of motor angular position and velocity

Each motor was equipped with an optical encoder for measuring the motor position and from the
position measurement, the velocity of the motors could be derived.

To be able to read the motor encoders the output connections of the motor controller PCB were
connected to the MyRIO. The encoder block in LabVIEW was then used to be able to read the
values from the encoders. The optical encoders were read at a timestep of 10 ms as stated in the
exercise documentation.

The digital signal read directly from the encoders are raw data relating to how much the wheel
has been turned. The encoder had 57 periods per revolution of the wheel, but because the type of
encoder used was a quadrature encoder this value would be multiplied by 4 making it 228 counts
per revolution. These raw data then had to be converted to a more usable notation like radians.
To do this equation 4.1 was used.

Motor position [radians] = Counter value · 2π
228 (4.1)

The motor position could then be read directly in radians in the LabVIEW front panel using a
numeric indicator block.

From the motor position signal, the motor velocity could be derived using the backward difference
rule. Using a sample time of 0,01s the velocity signal was derived and displayed in a numeric
indicator block. The velocity signal suffered from noise and needed to be filtered to get a more
stable reading. Thus a low-pass filter was used to filter the signal. The filter coefficients were then
manually tuned to get a reasonable trade-off between stability and delay.
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Figure 4.3: Velocity calculations in LabVIEW

4.3 Friction identification and compensation

The two motors used to drive the robot had some different dynamics because of the internal friction.
A friction test where performed to compensate for this. The test was performed by running the
motors at different PWM gains while having the wheels connected to the motors without any
external contact between the wheels and the surroundings. Figure 4.4 shows the LabVIEW blocks
used to implement the regression functions to the signal controlling the PWM.

Figure 4.4: Friction compensation by linear regression in LabVIEW

4.4 Robot localization by odometry and dead reckoning

Odometry was used to calculate the position, heading (yaw angle) and yaw rate of the robot. The
equations from chapter 3.3 was implemented in LabVIEW with a math script as seen in Figure
4.5. A first order Butterworth lowpass filter is added to the yaw rate calculations to filter out high
frequency disturbances in the signal.
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Figure 4.5: Odometry in LabVIEW

4.5 Accelerometer calculations

From the accelerometer data the pitch angle was calculated using the equations from chapter 3.4.
The LabVIEW implementation is shown in Figure 4.6.

Figure 4.6: Accelerometer calculations in LabVIEW

4.6 Gyro installation

Figure 4.7: Robot and gyro coordinate systems

Before the gyro were fastened to the chassis
with double-sided tape the coordinate system
of the gyro had to be determined. By plotting
the output of the gyro while rotating it by each
axis, its coordinate system were found. The
coordinate system of the gyro can be seen in
Figure 4.7.

When fastening the gyro to the chassis the co-
ordinate system of the gyro and chassis were
lined up making the axes parallel. Figure 4.7
represents the two coordinate systems aligned.
With the aligned coordinates, possible inverted
axes was fixed by multiplying the corresponding
accelerometer or gyro values with −1.
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4.7 Gyroscope calculations

LabVIEW was used to get sensor data from the gyroscope. A premade LabVIEW program provided
by National Instruments was used to obtain the sensor data from both the gyroscope and the
accelerometer. The program had to be modified to include zero-rate level compensation, unit
conversion, and sensor fusion to be used with together with the main program.

The zero rate level is the nonzero average output of the gyro when the gyro is completely still. To
compensate for this, the average rate was collected over 1000 samples. This value was then added
from the subsequent measurements, such that the gyro was calibrated to start non-biased. The
average nonzero output used for compensation for each axis is displayed in table 4.2.

Axis Average nonzero output [LSB]
x -142
y 46
z 36

Table 4.2: Zero rate level compensation parameters

The gyro data was then converted to degrees/sec to get an intuitive representation of the data.
Initially, the gyro was set to measure a maximum of 250 degrees per second (dps). This was
outputted through 16 bits of information with 1 bit representing the sign. The maximum digital
number the gyro could output was 215 = 32768. Therefore, the least significant bit (LSB) of the
output corresponds to 250/32768 = 0.007629 dps. The conversion done in LabVIEW is shown in
Figure 4.8.

Figure 4.8: Unit conversion in LabVIEW

After the compensation above, the sensor data still had a bit of an offset from true angles. When
changing the angle of the gyro 90°, the measured angle from the gyro showed approximately 79°. A
gain of 90/79 = 1.14 was therefore used to compensate for this offset. The properties of a gyro in
a sensor fusion system are to get the low-frequency behavior of the system while the accelerometer
provides the more accurate value of the angle. This means that an accurate angle measurement is
not crucial from the gyro.

4.8 Centre of gravity

The target of the balancing act of an inverted pendulum is to keep the center of gravity(CoG)
above the rotational point. To compensate for the error in angle offset θ, which can be seen in
Figure 4.10, the rotational point is driven underneath the CoG.

13



Figure 4.9: Complementary filter in LabVIEW



Figure 4.10: Centre of gravity
offset of rotational point

Any magnitude of θ other than the angle that correlates to
the direct upright position would accelerate the angle due to
the gravitational force. This is why the inverted pendulum
is only a locally stable system, with its only stable position
in the direct upright position. For the inverted pendulum to
keep this position a control system is needed to counteract
any disturbances. It is desired to keep the acceleration of the
pendulum, θ̈ at a minimum rate. This makes the system easier
to control, requiring less input on the motors at the point of
rotation.

The input on the motors is acting as a counter-balance on the
system. The output on the motors is torque moving the rota-
tional point and acting against the torque induced by gravity.
The torque at the rotational point is equal to the acceleration
of θ multiplied with the moment of inertia of the system, illustrated as a point mass. The correlation
between the acceleration θ̈ and the length l are shown in equations (4.2-4.4)[2].

Trp = I · θ̈ (4.2)

l ·m · g · sinθ = m · l2 · θ̈ (4.3)

θ̈ = g

l
· sinθ (4.4)

where,

Description Unit
Trp Torque at rotational point Nm

I Moment of inertia kgm2

θ̈ Angular acceleration rad/s2

m Point mass kg

g Gravitational acceleration m/s2

θ Offset angle rad
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Figure 4.11: Balancing robot with top-mounted battery

As can be seen in equation (4.4) an increased length l from the rotational point to the point mass
would decrease the angular acceleration making the system easier to control. Just as a broom it is
easier to balance it with the mass at the top, i.e the CoG is higher.

For the balancing robot, the design was fixed making alternatives changing the CoG limited. The
heaviest component on the robot is the battery, this is luckily also a component that can be
positioned all around the robot’s chassis. By placing the battery at the top of the chassis the
stability increased drastically making it even more controllable. The placement of the battery on
the balancing robot can be seen in Figure 4.11.

4.9 Control system

When the pitch measurements and the friction compensation was done properly, a control system
could be implemented. The final controller was set up as shown in Figure 4.12. This section will
explain the balance controller, the velocity controller, and the heading controller in detail.

Figure 4.12: Overview of all controllers
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4.9.1 Balance controller

To balance the robot, a cascade controller was used. The cascade controller uses the robot’s pitch
angle and angular velocity as inputs and gets the desired wheel velocity as output. The outer loop
of the balancing controller is a full PID controller that uses feedback from the pitch angle from
the complementary filter. The output of the outer controller is then used as the setpoint for the
inner controller, which is a simple P controller that uses the angular pitch velocity directly from
the gyroscope as feedback.

PID
𝜃𝑟𝑒𝑓

P
𝜃𝜃𝑒

ሶ𝜃𝑟𝑒𝑓

ሶ𝜃

ሶ𝜃𝑒
System

ሶ𝑥𝑟𝑒𝑓

Figure 4.13: Balancing controller

4.9.2 Velocity controller

To enable the robot to drive forward or backward while balancing, a second controller was added.
This controller determines the velocity bias in either direction independent of the balancing con-
troller. A PI controller was used for this purpose, by adding an integral term to the velocity
controller the robot would drift less. The setpoint of the controller is set in the main VI of the Lab-
VIEW program, where positive values give forwards motion and negative gives the reverse motion.
The feedback of the controller is from the velocity calculation based on the wheel encoders as seen
in chapter 4.1. Figure 4.12 shows how the velocity controller interacts with the overall controller
scheme.

4.9.3 Turn rate controller

A turn rate controller was implemented to enable the robot to turn while moving and balancing.
This controller determines the turning bias either to the left or right independent of the balancing
controller. The turn rate controller is set up with a PD controller. The input for the controller was
initially a controller in the main VI used to turn the robot manually. After the camera was added
the controller gained its input setpoint from the camera detection. The feedback to the controller
is the turn rate that was calculated in the odometry calculations in chapter 3.3. The output of
the controller was added to one wheel’s velocity setpoint and subtracted from the other’s as seen
in Figure 4.12. This way a standstill turn should happen around the robot’s axis without any
significant change in x- and y-position.

4.10 LabVIEW program

The LabVIEW was built up as visualized in Figure 4.14. The initialization and gyro code was
mostly from a premade example code, and therefore it will not be explained in detail. This section
will cover the control system block inside the loop.

SubVIs was made to simplify the program. To be able to understand the program, these are
explained in Table 4.3 and they can be seen in detail in Appendix A.
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Initialization

Loop (100𝐻𝑧)

Gyro

Control system

Stop

Figure 4.14: Simplified representation of the LabVIEW control program

Icon Description

Pitch calculation from the accelerometer

The balance controller explained in chapter 4.9.1

Complementary filter

A fail safe to stop the motors if the angle is more than 30 °from the balance point

Friction compensation from exercise 1

Odometry calculations to find yaw, x- and y-position

Calculations to find the speed from an encoder

Turn rate controller explained in chapter 4.9.3

Table 4.3: Custom made subVIs

4.11 Camera detection

The camera is a Trust Exis color camera with a resolution a maximum of 640x480p. It has a
wide field of view making it possible to see much of the path in front of the robot. The camera is
connected to the MyRIO via USB and is sufficient to use as a vision sensor. The built-in IMAQ
library in Labview is used to get the image output from the camera and for further analysis.

4.12 Image analysis in LabVIEW

The raw image provided by the camera is a color image, this needs to be converted to grayscale
before the conversion to binary can take place. By using the IMAQ ExtractSingleColorPlane VI
from the IMAQ library it is possible to extract the luminance plane which corresponds to the
grayscale image. The IMAQ AutoBThreshold 2 VI can then be used to convert the image to a
binary image for detection. Various detection algorithms can be used for detection in this block,
or a manual threshold can be set. This subVI also takes input from an ROI block that creates an
ROI rectangle that is modifiable from the main VI. The auto threshold block can either be set to
detect dark objects or bright objects. By setting it to detect dark objects, the black line should be
identified as the object and the floor as the background.

Image operations is a very processor-intensive task as a large number of computations need to be
performed. The number of computations is proportional to the number of pixels in the image, which
is decided by the resolution. The camera that is used for the project has several different resolutions
that can be assigned through the video mode attribute from a property node in Labview. To find
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Figure 4.15: LabVIEW Program
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the various video modes, a separate LabVIEW code was run that outputs a list of the various
video modes available on the chosen camera. The various video modes of the Trust camera can
be seen in Figure 4.16. To aid in computation time the resolution was set to the lowest setting of
160x120 pixels. The framerate output of the camera can also be set in the video mode property
node, although this only corresponds to the camera framerate, not the framerate of the timed loop
that performs the computations. These framerates should match however to optimize the efficiency
of computation.

2

Figure 4.16: Available video modes on the Trust
camera

To compute the center of the detected line the
IMAQ Particle Analysis VI was used and set
to detect the center of mass in the horizontal
direction. As the image’s resolution is set to
160x120p the center of object detection needed
to be subtracted a value of 80 for the feedback
to the heading controller to have the value of
zero in the middle of the image. This should
give the heading controller a positive error when
it turns to the left and a negative error when
it turns to the right, thus correcting its course
keeping the robot centered on the black line.

If the robot should lose the line detection dur-
ing operation, a feedback loop was implemented
that feeds back the previous value from the
x position dataset to the turn rate controller.
This gives the turn rate controller the setpoint
from the last iteration before the line was lost,
giving the controller an error that should cor-
rect the heading back towards the line.

The final LabVIEW program can be seen in
Figure 4.17.

Figure 4.17: LabVIEW camera program
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5 Results

5.1 Friction compensation

The velocity measurements from the friction identification test is shown in table 5.1. The table
is plotted in Figure 5.1 where the points were plotted together with a linear regression line for
both the left and right motor. Figure 5.1 shows that the right motor had more friction than the
left motor. That points out the importance of tuning the two motors individually with respect to
friction.

PWM input Left wheel velocity [m/s] Right wheel velocity [m/s]
0,9 2,95 3,05
0,7 2,18 2,29
0,5 1,34 1,56
0,3 0,6 0,79
0,2 0,23 0,4
-0,2 -0,21 -0,42
-0,3 -0,6 -0,8
-0,5 -1,38 -1,58
-0,7 -2,15 -2,3
-0,9 -2,84 -2,99

Table 5.1: Results from the friction identification
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Figure 5.1: Linear regression
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5.2 Robot localization by odometry and dead reckoning

The result was verified by measuring a length of 4 meters on the floor and driving the robot in a
straight line for 4 meters. The x-value showed approximately 4 meters, and the heading was close
to zero which is as expected. The heading calculations were verified by running one motor faster
than the other until the robot reached a heading of 90 degrees. Results showed approximately 90
degrees as expected.

5.3 Data fusion

The results of the complementary filter output are shown in Figure 5.2 and Figure 5.3. The results
are shown for a balance parameter alpha of 0.98.

Figure 5.2 shows the output when the robot was held at a constant level surface resulting in a
0-degree pitch. From this graph, one can see the stability of the filtered output.
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Figure 5.2: Results

Figure 5.3 was produced by taking the robot from 0 degrees pitch and then lifting it to stand in
a vertical position. From this graph, one can see that the filtered output follows the actual pitch
angle of the robot with little delay and noise.
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Figure 5.3: Results from the accelerometer and complementary filter
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5.4 Two-wheeled balancing

After tuning the controllers, the robot could balance. The robot was able to keep a given velocity
in both forwards and backwards direction and then it could stop by setting the velocity to 0.
The same applies for turning. The maximum turning rate was tested for 180°turns which is the
most that the robot will have to perform. For a 180°turn, the robot could turn at a maximum of
approximately 490 [°/s] without falling over, this corresponds to ±0.8 [m/s] for each wheel, and a
saturation was set to 0.8 on the output of the turn rate controller.

The pitch angle when balancing is shown in Figure 5.4.
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Figure 5.4: Results of pitch while balancing

The yaw and position results from balancing the robot without a yaw-controller are shown in Figure
5.5 and 5.6. Figure 5.5 shows that without a yaw controller, the position drifted quite a lot in both
x- and y-position. The large drift in y-position is caused by the change in yaw angle which is also
drifting with a value of 225 degrees after 1 minute (see Figure 5.6).
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Figure 5.5: Results of x- and y-position while balancing

When adding the yaw controller, the robot was still moving quite a bit in the x-direction. However,
the y-position remained within ±5 cm which is very satisfying. This is shown in Figure 5.9. The yaw
angle was correcting the error and the large drift from before was reduced significantly. However,
the controller had to be tuned additionally to make the robot follow a line.
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Figure 5.6: Results of yaw while balancing
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Figure 5.7: Results of yaw while balancing with yaw controller

Figure 5.8: Results of x-, and y-position while balancing with yaw controller

0 10 20 30 40 50 60

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

P
o
si

ti
o
n
 [

m
]

x-position

y-position

Figure 5.9: Results of x-, and y-position while balancing with yaw controller
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5.4.1 Tuning

The final values of each controller is shown in Table 5.2

Controller Type KC TI TD

Balance outer controller PID 400 0.005 0.00025
Balance inner controller P 0.0015 - -
Velocity Controller PI 1 0.005 -
Turn rate controller PD 0.002 - 0,05

Table 5.2: Controller parameters

5.5 Camera detection and line following robot

The various images used by the detection algorithm can be seen in Figure 5.10. Figure 5.10a shows
the raw image coming directly from the camera on the robot. Figure 5.10b shows the image after
the luminosity plane has been extracted which corresponds to the grayscale image. Finally, image
5.10c shows how the binary image detects the black line within the ROI. It can be seen that the
detection algorithm works very well with a still image.

(a) Raw image from camera (b) Image converted to grayscale (c) Binary image, detection
within ROI

Figure 5.10: Images calculated in the detection loop

The impact on detection by light reflections on the floor can be seen in Figure 5.12. Two different
detection methods were tested, a manual threshold limit, and the clustering detection algorithm.
During light reflections, it is clear that the clustering algorithm is the best choice. However, the
manual threshold is still able to detect the line, as long as there is some detection in the image, the
center of the object can be calculated.

(a) Example of light reflection
in raw image

(b) Manual detection threshold (c) Clustering detection
alghoritm

Figure 5.11: Impact on line detection by light reflections
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During some lighting conditions, shadows become a problem with detection. Especially if there is a
bright light source behind the robot, this will cause a false detection by the shadow. In Figure 5.12a
the impact of shadows can be seen from both the manual threshold and the clustering detection
algorithm. Here it is the manual threshold that does the best job at detecting the line, the clustering
algorithm is not able to separate the shadows from the line.

(a) Example of shadows in raw
image

(b) Manual detection threshold (c) Clustering detection
alghoritm

Figure 5.12: Impact on line detection by shadow

Figure 5.13 shows the histograms of the graylevel output during both reflections and shadows in
the image. From these histograms the manual threshold was set, the best performance on both
problem cases was seen with a manual threshold from 0 to 35. This causes every pixel with a
luminosity lower than 35, within the ROI, to be detected as an object, and everything else will be
detected as background. The manual threshold was chosen as the best option overall and was thus
used in the final source code.

(a) Grayscale histogram during reflections (b) Grayscale histogram during shadows

Figure 5.13: Grayscale histograms
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6 Discussion

One time-consuming issue that was experienced was a hardware issue with the motor controller that
proved to be faulty. The controller had to be replaced 2 times as the first replacement controller
also proved to be faulty. Also when trying to connect the gyroscope, and determine its coordinate
system, the gyroscope did not work properly either. The gyroscope was thus also replaced.

The identification and compensation of friction was the task that would require the most time to
be performed. After the first identification of friction, it was discovered that one of the wheels was
about 1 cm closer to the base than the other. This was then corrected and the friction identification
had to be performed anew due to the new wheel mounting settings. During testing on the bench,
these parameters made the recorded velocity of the wheels coincide fairly good, however during
testing on the ground the robot would diverge from a straight line slightly to the left side during
forwarding motion. The friction compensation parameters were thus manually tweaked slightly
until the forward motion had little to no divergence from the straight line. The testing was only
performed at a distance of around 4 meters, for longer stretches the steady-state error would only
increase making the deviation from the straight line even larger. This is however the nature of the
linear regression compensation that has been implemented.

To tune the controllers, a thoughtful variation of the controller parameters was performed until a
satisfactory result was achieved. Other methods for tuning the controllers could have been used,
but they all require a complete mathematical model. For the general dynamics of the robot, the
inverted pendulum dynamics could have been used for a mathematical model which could then
have been tuned. However, there is some doubt for whether these parameters would provide a
sufficiently good response on the real robot as the robot’s wheels have proven to have very varying
friction dynamics. To model these friction dynamics accurately would be a very time-consuming
job and would greatly complicate the model. The cascade controller was therefore chosen when it
proved to be sufficient for this project.

During testing of the camera detection, it was seen that the detection algorithm is very dependent
on the lighting conditions. An option would have been that the robot had a light source to illuminate
its path making detection easier under varying light conditions.

The detection loop in the main program needed to be run at a much lower frequency than the
control loop as the detection algorithm is very computationally expensive. Initially, a maximum
frequency of 5 Hz was the maximum the MyRIO could handle before being overloaded. At 5Hz
the line following act was affected by overshooting the line when turning due to the position not
updating frequently enough. Otherwise, when the loop was not able to finish its computation in
time, the control loop would not receive the X-position in time, and thus the entire line following
act would be delayed and the same problem occurred. After reducing the camera resolution the
frequency could be increased to 10 Hz comfortably. At this frequency, the performance of the line
following was noticeably improved.

The WiFi used by the wireless hotspot used to connect LabVIEW to the MyRIO was noticed to
have a very large impact on the performance of the connection. At Fjære Skole the WiFi connection
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is very poor which caused the LabVIEW VI to lag by many seconds. Also, the uploading of new
source code would take a very long time. A solution was found in connecting the LabVIEW PC to
a mobile data hotspot through a cell phone. Then sharing this WiFi to the MyRIO, this improved
the transfer rate between the PC and MyRIO greatly and the video feed could almost be viewed
in real-time.
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7 Conclusion

All tasks of 4 of the exercises have been performed with good results without any major problems.
The LabVIEW code works efficiently on the MyRIO and the LabVIEW front panel gives all re-
quested outputs with little noise and delay. The friction compensation is not optimal, however as
friction function is highly nonlinear and non-consistent.

The implementation of the gyro and accelerometer in a complementary filter has proved to give
good results for detecting the pitch and yaw angles of the robot. The balance parameter alpha in
the complementary filter was set to 0,98 which showed the best results for the accelerometer’s low
term accuracy and the gyroscope’s long term accuracy.

The robot has been made to satisfactorily balance autonomously. The robot has very little drift
while only set to balance. The robot also can bring itself back to balance from small manual
disturbances. The linear velocity can be controlled directly from the Labview VI. The turn rate
controller makes sure that the heading is straight despite the wheels having very varying friction
dynamics, even after a good friction compensation.

When using the line following function of the robot it performs well even at tight turns in the
path. A manual detection threshold has been set that provides the best results in varying light
conditions. Using a larger velocity bias gives a smoother performance at straight sections in the
path at a trade-off for some overshoot from the path during tight corners.

A video has been made of the final robot which can be viewed on YouTube.

Link: https://youtu.be/AZ8HnyVm6Bw
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A Labview program

Figure A.1: Labview main file

A.1 SubVIs
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Figure A.2: Balance controller

Figure A.3: Complementary filter

Figure A.4: Fail safe
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Figure A.5: Friction compensation

Figure A.6: Odometry

Figure A.7: Pitch calculations from the accelerometer

Figure A.8: Speed calculations from encoder
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Figure A.9: Turn rate controller
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